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Experimental data on vapor phase second virial coefficient isotope effects (VCIEs) are reviewed and then
interpreted using the general theory of isotope effects. Useful correlations are developed between-∆(B -
bo)/(B - bo) ) (-VCIE) and [ln(fc/fg)]* , where [ln(fc/fg)]* is the reference condensed phase reduced isotopic
partition function ratio, andB is the second virial coefficient,bo ) 2πσ3/3, σ is the Lennard-Jones size
parameter, and∆ denotes an isotopic difference, light-heavy. [ln(fc/fg)]* can be straightforwardly obtained
from measurements of vapor pressure isotope effects forTR ) T/TCRITICAL < 0.7. We show (-VCIE) )
ln(fp/fg2) where ln(fp/fg2) is the reduced isotopic partition function ratio associated with the equilibrium between
isolated gas-phase monomer species and interacting pairs. At temperatures well removed from crossovers in
ln(fp/fg2) or [ln(fc/fg)]*, ln( fp/fg2) ) (0.4 ( 0.2) [ln(fc/fg)]*.

Introduction

It is well established that isotope effects (IEs) on condensed
phase molar volume (MVIE), on vapor pressure (VPIE), on
vapor phase virial coefficients (VCIE), and on molecular
polarizability (PIE), are closely related. These isotope effects
share a common origin in the vibrational properties of the
molecules of interest. Van Hook and Wolfsberg1 have shown
that PIE, an effect of vibrational averaging, gives rise to an IE
on the van der Waals interaction. Earlier, Wolfsberg2 demon-
strated that the vdW dispersion interaction includes an isotope-
dependent zero point energy shift that can be expressed in terms
of ground-state infrared intensities and vibrational polarizabili-
ties. Thus the vdW dispersion interaction (and by extension
more complicated interactions such as dipole-dipole, dipole-
induced dipole, and hydrogen bonding) must account on one
hand for the gas-gas virial coefficient interaction and the VCIE,
and on the other for bulk phase condensation and the VPIE.
Even so, the details of the relationships between PIE, MVIE,
VCIE, and VPIE have been argued for years, sometimes
contentiously.2-10 This situation has arisen because it has proved
convenient to express virial coefficients (and VCIEs) using a
parameter set that defines an intermolecular potential and IEs
thereon (ε, σ, ∆ε/ε, and∆σ/σ),3,5,11while for the description of
MVIE and VPIE it has often proved more useful to employ a
formalism that uses a set of vibrational frequencies and
frequency shifts, and their isotope dependences.12-14 Unfortu-
nately, for VCIE, the subtleties of the vibrational averaging
process that leads from a properly defined isotope independent
potential function to a description of the IEs in terms of a set

of effective Lennard-Jones parameters (or parameters of some
alternative intermolecular potential function) and their isotope
effects,∆ε ) ε′ - ε ) εH - εD and∆σ ) σ′ - σ ) σH - σD,
have not been sufficiently clearly articulated. Some confusion
remains, and in the worst case, this can result in inter-
pretations that violate the Born-Oppenheimer (BO) approxima-
tion. That BO approximation, of course, has been axiomatic in
the development of the theory of equilibrium isotope chemis-
try.15

In the material that follows, we choose a different path to
illustrate the connection between VPIE and VCIE. We compare
standard state free energy differences between average con-
densed phase molecules or average gas-phase dimers, on one
hand, and the dilute gas-phase reference on the other. The direct
correlation supports the conclusion that the two effects share a
common origin.

Thermodynamic Formalism. The VPIE. Bigeleisen has
developed the thermodynamics of the vapor pressure isotope
effect.12,16The isotopic difference in Gibbs free energy for the
condensed phases is written

〈Qc〉 ) Qc
1/N and〈Q′c〉 ) Q′c1/N are properly averaged molecular

partition functions, andQ′c and Qc are by convention the
canonical partition functions for assemblies ofN light (primed)
and heavy (unprimed) condensed phase molecules,P′ and P
are equilibrium vapor pressures, andV′c andVc are condensed
phase molar volumes not to be confused with the critical
volumesV′crit andVcrit. For the vapors, limiting corrections for
nonideality to second order (i.e., through the second virial* To whom correspondence may be addressed.

µ′c - µc ) -RT ln(〈Q′c〉/〈Qc〉) + (P′V′c - PVc) (1)
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coefficient), we have

Q′g,int and Qg,int are the canonical partition functions omitting
the contribution of translation (ideal gas, denoted by the
subscript g),M′ andM are the molecular masses of the isotopic
molecules, andB′o andBo are second virial coefficients when
the vapor equation of state is written as (PVg/RT - 1) ) BoP
+ 1/2CoP2 + ... Should one choose to employ the expression
(PVg/RT- 1) ) B/Vg + C/Vg

2 ... one findsB ) BoRT, etc. At
equilibrium,δµ′ ) (µ′g - µ′c) ) 0 ) δµ ) (µg - µc), soδ∆µ
) (µ′g - µ′c) - (µg - µc) ) 0, and it follows from eqs 1 and 2
that

The first (logarithmic) term on the right-hand side, i.e., the one
expressing the logarithmic ratio (condensed phase/gas phase,
c/g) of isotopic partition function ratios (heavy/light, unprimed/
primed) goes to zero in the classical limit (high temperature).
The deviation from zero, if any, is a quantum effect. As shown
originally by Bigeleisen and Mayer,16 it becomes convenient
to introduce the reduced isotopic partition function ratio to
express the isotopic ratio of the quantum mechanical (qm) to
classical (cl) partition functions, ((s/s′)fâ ) [(Q/Q′)qm/(Q/Q′)cl]â,
whereâ may be either “c” or “g”, andsands′ are the symmetry
numbers of the unprimed and primed molecules). Equation 4
follows directly. In eq 4 and subsequently, we suppress
expression ofs/s′ for economy of notation and because that
supression does not affect our arguments.

At low enough temperatures, i.e., not too far above the triple
point, say betweenTTRIPLE and ∼0.7T/TCRITICAL, the last two
terms in eq 4 are small, and to good approximation one is able
to employ low-temperature VPIE data to define the reference
condensed phase isotopic partition function ratio, ln(fc/fg)*, equal
to VPIE ∼ ln(P′/P).

In this temperature range, the vapor pressure isotope effect, ln-
(P′/P), is just the logarithm of the isotope effect on the
equilibrium constant, ln(K′/K), corresponding to the phase
change (condensed phase molecule(s)) vapor phase molecule-
(s))EQ.14,17,18 Also for (TTRIPLE < T < 0.7T/TCRITICAL), the
reference isotopic partition function ratio can be expressed in
the form ln(fc/fg)* ) Ac/T2 + Bc/T with Ac andBc constant.Ac

contains information about the condensed phase force constants
that define the external (lattice) frequencies of the molecule,
andBc contains information about the difference in the internal
frequencies between the gas and the condensed phase (frequency
shifts on condensation), vide infra. At higher temperatures, but
below the critical temperature, one must take into account the
correction factors indicated in eq 4 to calculate VPIE, and in
addition the temperature dependences ofAc andBc, if any, must
be considered. The latter arise largely because the temperature
dependence of the molar volume is expected to decreaseAc and

Bc when the system expands and the condensed phase structure
breaks up during the approach toTCRITICAL. Above TCRITICAL,
the reference condensed phase isotopic partion function ratio,
ln(fc/fg)*, has no meaning in terms of comparisons with VPIE,
but its numerical value still serves as an interesting reference
when considering isotopic partition function ratios of interacting
pairs of gas-phase molecules in the theory of isotope effects on
second virial coefficients.

An important reason for using reduced function ratios in the
development that leads from eqs 1 and 2 to eqs 4 and 5 is the
simple form thus obtained in the harmonic oscillator/rigid rotor
approximation for the treatment ofN atomic molecules. In that
application (s/s′)f is evaluated in terms of the set ofi normal
mode harmonic vibrational frequencies,νi, i ) 1, 2, ... 3N, for
the condensed and vapor phases, and of the isotope effects on
those frequencies. It is often useful to divide the frequencies
into two classes. The first, or high-frequency class, contains
harmonic modes for whichui ) hcνi/kT ∼ 1.44νi (cm-1)/T .
1 and for which the low temperature (or zero-point energy)
approximation is appropriate (see Appendix A). This class
usually contains the (3N - 6) nonzero frequencies of the
(nonlinear) gas-phase molecule, as well as the frequencies to
which they correspond in the condensed phase (i.e., the internal
degrees of freedom). The second class contains the low
harmonic frequencies (u , 1) which are treated in the so-called
high temperature approximation (first quantum correction,
Appendix A). These modes usually correspond to the six degrees
of translation and rotation in the ideal gas (zero frequencies)
which shift on condensation to a set of six restricted translations
and rotations. These degrees of freedom are referred to as
external modes. After some calculation, one obtains (Appendix
A)

with Ac ) (1/24)(hc/k)2(∑ [(ν′i2 - νi
2)c - (ν′i2 - νi

2)g]). The
sum is over the low frequency (low wavenumber) set, it being
understood that the six external condensed phase frequencies
(three hindered translations and three hindered rotations) reduce
to null frequencies in the ideal gas. AlsoBc ) (1/2)(hc/k)(∑
[(ν′i - νi)c - (ν′i - νi)g]); this sum is over the (3n - 6) high
frequencies. For linear molecules, there are but 5 external modes
(3 translations, 2 rotations) and (3n -5) internal modes; for
monatomics there are only 3 external modes (all translations)
and no internal modes. For more rigorous analysis, instead of
using eq 6, one evaluates ln(fc/fg) with complete expressions
for condensed and vapor phase partition functions, sometimes
including corrections for nonclassical gas-phase rotation and/
or vibrational anharmonicity (Appendix A). Those refinements
notwithstanding, it is true that eq 6 accurately expresses the
basic physical chemistry of the VPIE and may be usefully
employed for the empirical representation and (sometimes) for
extrapolation of VPIE data to higher or lower temperature. [For
instance, for CH4/CD4 and CH4/CH3D, it was shown19,20 that
an extrapolation of low-temperature VPIE data using two
parameters (eq 6) could represent new data3,21 in the critical
region (∼60 K higher) to 0.1%.] A similar conclusion can be
inferred from data for36Ar/40Ar. Here, new high precision VPIE
data22 nicely described using the two-parameter fit (eq 6), are
found to be in excellent agreement with older data23 at higher
(as much as 45 K) or lower (as much as 20 K) temperature
when extrapolated using the two-parameter fit.22 Thus, the form
of eq 6 suffices for an adequate, albeit empirical, representation
of lattice anharmonicity over the liquid range.20 This is an
important point in the discussion that follows, since experimental

µ′g - µg ) -RT ln(Q′g,int/Qg,int) + RT ln(P′/P) +
RT[(3/2) ln(M′/M)] + (B′oP′ - BoP) (2)

ln(P′/P) ) ln[(Q′g,intM′3/2〈Qc〉)/(Qg,intM
3/2〈Q′c〉)] +

(P′V′c - PVc)/RT- (B′oP′ - BoP)/(RT) (3)

ln(fc/fg) )
ln(P′/P) - (P′V′c - PVc)/RT+ (B′oP′ - BoP) (4)

ln(fc/fg)* ) ln(P′/P) )
VPIE (TTRIPLE< T < ∼0.7T/TCRITICAL) (5)

ln(P′/P) ∼ ln(fc/fg) ) Ac/T
2 + Bc/T (6)
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data for both VPIE and VCIE are not usually available for the
same temperature range. A more complete discussion of the
relationships between ln(fc/fg)*, ln(fc/fg), their representations
using pseudoharmonic and harmonic models, and ln(P′/P) )
VPIE, asT increases toward the critical region where molar
volume and vapor nonideality corrections become important,
and eventually dominate, is given in Appendix B. Appendix B
makes it clear that the comparison of interest to us in this paper
is that between the properties of the ideal gas-phase dimers with
those of the low-temperature liquid-phase not too far from its
triple point, i.e., with ln(fc/fg)*.

The VCIE.The theory of the second virial coefficient of gases
is well understood.11,24,25In classical statistical mechanics, one
obtains for the virial coefficient of a monatomic gas

whereφ(2)(r) is the potential of interaction between two atoms,
φ(1)(r) is the one atom potential function (i.e., exp(-φ(1)(r)/kT )
1), and NA is Avogadro’s number. The coordinater is the
distance between the two atoms. Using a statistical argument,
Rice25 has shown that it is reasonable to replace eq 7 with eq
8.

In eq 8, 2K(T) is the integrated excess probability of finding
two atoms in the gas closer to each other than they would be in
a random distribution with no two atom potential. This prob-
ability has been set equal to the value of the equilibrium constant
K for the dimer association of the monatomic gas (the factor of
2 arises because two atoms form one dimer molecule).K here
refers to the equilibrium constant expressed in terms of
molecular densities of dimer and monomer, respectively, and
has units of volume. The first term, (2/3)πσ3 (referred to here
and elsewhere asbo), arises from the fact that the two body
potentialφ(2)(r) has a long-range attractive portion but at short
range (distances less thanσ) is strongly repulsive. At short range
(r < σ), the first term in the integral in eq 7 rapidly goes to
zero, while the second term is equal to unity for the monatomic
virial coefficient. Thus, (2/3)πσ3 is the volume excluded by the
short-range repulsion. For larger, whenφ(2)(r) goes to zero,
the integral in eq 7 also goes to zero. At intermediate values of
r, the integrand is positive becauseφ(2)(r) is a binding potential.
Equation 8 correctly explains the temperature dependence of
observed virial coefficientsspositive values at highT whereK
approaches zero, decreasing positive values as temperature
decreases, becoming negative asT continues to decrease
depending on the strength of the two body interactionφ(2)(r).

It is noteworthy that one can obtain the relationship between
B and the equilibrum constantK by considering a thermody-
namic equilibrium between stable dimer A2 and monomer A
species (2A) A2), then assuming both A and A2 to be ideal
gases, and finally calculating the total pressure of the system.
This line of thermodynamic reasoning yieldsB ) -K. The
equilibrium constantK is a positive quantity, approaching zero
at high temperature. One also knows that the hard sphere second
virial coefficient of a gas isbo and that, indeed, second virial
coefficients tend to be positive at higher temperatures. Thus,
one can reason that eq 8 is a reasonable representation ofB.

For calculation of virial coefficients of polyatomic molecules,
the theoretical formulation in classical statistical mechanics
becomes more complicated than eq 8 since many molecular
degrees of freedom need to be considered. However, what

remains, the same as eq 8, is that one still calculates the
difference between an integrated probability for finding two
molecules close to each other when the two molecule interaction
is included and the probability of finding the two molecules at
the same distance in the absence of the two molecule interaction.
One is led to an equation for the virial coefficient of the same
form as that given in eq 8 with the two terms again being an
excluded volume and an association equilibrium constant. With
eq 8, there is no isotope effect on the second virial coefficient
in classical mechanics. The first term in eq 8 depends only on
the potential parameterσ which is independent of isotopic
substitution in the BO approximation, and it is well-known in
isotope chemistry that an equilibrium constant formulated using
classical statistical mechanics,Kcl, is independent of isotopic
substitution.16

In making the transition to quantum statistics, we note that it
has been shown24 that quantum statistical mechanics yields an
expression similar to eq 7 for the second virial coefficient of a
monatomic gas. It is only necessary to replace the Boltzmann
factors, exp(-φ(i)(r)/kT), by the corresponding normalized Slater
sums (the normalizing factor has been omitted in eq 9)

where theψn(r)’s correspond to an appropriate orthonormalized
complete set of functions and the summation is over this
complete set.T is the quantum mechanical operator for kinetic
energy and the functionsφi(r) correspond toφ1(r) or φ2(r) of
eq 7. The important point to recognize is, forr < σ, the potential
remains strongly repulsive so that the contribution toB only
arises from the second term in eq 7 (quantum version) and the
excluded volume, (2/3)πσ3 is again obtained. Similarly, the two
terms in the quantum mechanical equivalent of eq 7 cancel at
large values ofr where the two atom interaction disappears.
Thus, we are led again to eq 8 for the virial coefficient except
that nowK is to be formulated quantum mechanically. Note
that the quantum mechanical equilibrium constantK is isotope
dependent. The statistical mechanical formulation of the equi-
librium constant for pair formation should be written as the ratio
of the partiton function for two monomers in the presence of
the interaction potential between monomeric species (and
including the appropriate summation of continuum states above
the dissociation limit) and the corresponding partition function
for two monomers in the absence of an interaction potential.11,26

In our model, we considerK in the “harmonic approximation”,
replacing it by a bound dimer (pair) harmonic-rigid-rotor
partition function divided by the square of the harmonic partition
function of the corresponding monomer, ln(fp/fg2).

Sincebo ) (2/3)πσ3 is isotope independent, one focuses the
discussion of VCIE in the context of eqs 8 and 9 on (B - bo),
which is directly related to the association equilibrium constant
K. Continuing, we develop expressions for (-VCIE) ) ln(fp/
fg2) analogous to those for ln(fc/fg)* by recalling that the vapor
pressure may be regarded as the equilibrium constant for the
reaction (liquid) vapor). Consequently, because the reduced
partition function ratio (fc/fg) refers to isotopic ratios of partition
functions in the condensed and vapor phases, one expresses
ln(P′/P), by relating it to (fc/fg) and (fc/fg)*, see eq 5. In the
present communication, we establish the relationship by com-
paring (fc/fg)* values obtained from VPIE to corresponding
(fp/fg2) values obtained from VCIE. The isotope effect on the
association equilibrium constantK is expressed in terms of
reduced partion function ratios as ln(K′/K) ) ln(fg2/fp) in precise
analogy to eq 5. We define VCIE as follows.

B ) -2πNA ∫ [exp(-φ(2)(r)/kT) - exp(-φ(1)(r)/kT)]r2dr
(7)

B ) (2/3)πσ3 - K(T) (8)

∑ ψ*n(r) [exp(-(T + φi)/kT)]ψn(r) (9)
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The reason for the minus sign clearly rests on the fact thatK
involves the equilibrium (2-monomer) pair) but the vapor
pressure equilibrium involves (condensed phase) monomer).
Equation 10 defines VCIE and establishes its relationship to
the measured values of the virial coefficient and to theAp and
Bp parameters. Alsobo ) (2/3)πσ3 is the excluded volume per
particle, andσ is the size parameter in the Lennard-Jones,
Sutherland, or other intermolecular potential;bo values have
been tabulated for some common molecules.11

Further discussion of eq 10 is appropriate. When considering
isotope effects on any property that can be described in terms
of partition functions, including virial coefficients, it is custom-
ary to focus on quantum mechanical corrections to ratios of
classically formulated partition functions, recognizing that at
high enough temperature the correct quantum mechanical
formulation must approach the classical limit. For the second
virial coefficient, lim(T f ∞)[B] ) bo, which impliesbo ) b′o
since lim(Tf ∞)[B/B′] ) bo/b′o ) 1. Indeed,bo depends only
on the potential function which is isotope independent. AsT
falls below its high-temperature limit,B drops off from the
small positive value,bo, characterizing the excluded volume
contribution, through zero, to much larger negative values which
are a consequence of the attractive part of the intermolecular
potential. Further, using∆B ) B′ - B and recognizing that
∆B/(B - bo) , 1 and∆bo ) b′o-bo ) 0, we obtain

As already noted, in applying the harmonic model to VCIE (eq
10), the partition functions of pair and monomer are normally
written in the rigid rotor-harmonic oscillator approximation. As
in the treatment of the vapor pressure isotope effect, the factor
Ap in the next but last term on the right contains a sum over the
low frequencies in the dimer, that is a sum over those
frequencies of the interacting pair that correlate with the zero
frequency monomer translations/rotations. TheBp factor (in the
last term on the right of eq 10), on the other hand, treats the
higher frequency internal vibrations that are expected to have
shifted slightly during the transition from the ideal gas mono-
mers to the interacting pair. One then obtains by analogy toAc

and Bc of eq 6, Ap ) (1/24)(hc/k)2(∑ [(ν′i2 - νi
2)d - (ν′i2 -

νi
2)g]) and Bp ) (1/2)(hc/k)(∑ [(ν′i - νi)d - (ν′i - νi)g]), see

Appendix A. The sum in the expression forAp for a nonlinear
polyatomic molecule extends over the 12 frequencies corre-
sponding to the so-called external degrees of freedom, which
in the monomers are the rotations and translations of the two
molecules (and which have zero frequencies in the monomers);
in the dimer those 12 frequencies correspond to the three
rotations and three translations of the dimer molecule (which
again are zero frquencies), plus six frequencies that correspond
first to one monomer-monomer stretch (denoted here by the
subscript LJ), and five other low lying frequencies that we
describe as loose monomer-monomer bending modes or
hindered internal rotations. The remaining 2(3n - 6) internal
frequencies of the two n-atomic monomers map into the same
number of internal frequencies of the dimer, slightly shifted in
frequency from the monomer frequency; the summation over
these larger frequencies (referred to as internal frequencies)
appears in theBp term. Incorporating these considerations into
eq 10, we obtain eq 12a.

The analogous equation for ln(fc/fg)* is obtained from eqs 5
and 6,

The first sum on the right-hand side of eq 12b is over the six
external lattice modes of the condensed phase molecule (cor-
responding once again to zero frequency gas-phase translations
and rotations), and the second treats the (3n - 6) remaining
“internal” frequencies in condensed (subscript c), and gas phase
(subscript g). Equations 10, 11, and 12a are consistent with the
earlier thermodynamic analysis of Phillips, Linderstrom-Lang,
and Bigeleisen.27

Study of eqs 12a and 12b reveals thatAp andAc are inherently
positive. This results because (ν′i2 g νi

2)p and (ν′i2 g νi
2)c

(recall the prime refers to the more lightly substituted molec-
ule), and (ν′EXT

2)g ) (νEXT
2)g ) 0). Thus, theA contribution to

ln(fc/fg)* or ln(fp/fg2) is necessarily positive, i.e., in the direction
of a normal isotope effect (light> heavy). TheB terms,
on the other hand, involve the sum of dimer-monomer or
condensed-vapor isotopic frequency differences and can be
either positive or negative depending on the sign of the net
frequency shift on the phase transfer [i.e., whether it is to the
red (negative) or to the blue (positive)]. For monatomic species
Bc ) Bp ) 0 (there are no internal modes), and the isotope
effects are necessarily positive (normal) sinceAc > 0 andAp >
0. Alternatively, for molecules with structure the situation is
more complicated. If the net shift in internal modes on
condensation/dimerization is to the blue, theA andB terms are
both positive and reinforce one another. The IE will be positive
and large. More often, however, the net shift in isotope sensitive
internal frequencies is to the red (the ordinary case for
noncomplexed H/D substitution in, for instance, hydrocarbons)
and B is of opposite sign toA. Over some range of temperature,
B/T may be, and often is, larger in magnitude thanA/T2. In
such cases, the net isotope effect will be negative (inverse),
it is a small difference between competing positive and nega-
tive terms with distinctly different temperature dependences.
These matters have been thoroughly discussed so far as
application to VPIE is concerned.12,14,17 It is our anticipation
that similar considerations will carry over in the interpretation
of (-VCIE). This is the principal point of concern for the present
paper.

Comparisons of ln(fc/fg)* and ln(fp/fg2) ) (-VCIE). The
important qualitative features of the model introduced above14,25

are summarized in Figure 1and then illustrated for specific
examples (methane, water) in Table 1. When a molecule is
transferred from its ideal gas reference state to the dimer, or to
the condensed phase, significant changes occur in both its
internal and external degrees of freedom. In the description of
this process (implied in eqs 4 through 12), one refers to a 3n
dimensional potential energy surface, PES, which describes how

ln(K/K′) ) -ln(K′/K) ) ln(fp/fg
2) )

-ln[(B - bo)′/(B - bo)] ) (-VCIE) ) Ap/T
2 + Bp/T (10)

ln(fp/fg
2) ) (-VCIE) ) -ln[(B - bo)′/(B - bo)] )

-ln [1 + ∆B/(B - bo)] ) -∆B/(B - bo) (11)

ln(fp/fg
2) ) (-VCIE) ) Ap/T

2 + Bp/T )

(1/24)(hc/kT)2{∑
5

[(ν′i
2 - νi

2)Bend,Int. Rot] + (ν′i
2 - νi

2)LJ]}p +

(1/2)(hc/kT)( ∑
2(3n - 6)

[(ν′i - νi)p - (ν′i - νi)g])INT (12a)

ln(fc/fg)* ) Ac/T
2 + Bc/T )

(1/24)(hc/kT)2{∑
6

[(ν′i
2 - νi

2)EXT.lattice modes}c +

(1/2)(hc/kT)( ∑
(3n - 6)

[(ν′i - νi)c - (ν′i - νi)g])INT (12b)
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the molecular potential energy depends on the distortion of
various atoms or groups of atoms from their respective equi-
librium configurations (internal degrees of freedom), and on
the position or orientation of the molecule itself (external degrees
of freedom). Figure 1 is a representation that shows the shifts
in intermolecular potential energy (less vibrational contribution)

and in the internal vibrational potential energy for a single
normal mode (specified in terms of bond length,r, or combina-
tion of bond lengths and angles as appropriate), as two or more
molecules vary their distance of intermolecular separation
RINTERMOL ) R12. A similar diagram can be constructed for each
of the 3n - 6 internal degrees of vibrational freedom of the
molecule of interest. In Figure 1, the upper curve labeled “R”
sketches the transfer between the dilute gas reference state (on
the right at largeR12) and the complexed (dimerized) vapor
molecule at the bottom of the upper well to the left. Similarly,
the lower curve labeled “â” shows the transfer from dilute vapor
to condensed phase. Thus, while in the first case,u(R12)
represents the pair intermolecular potential energy, in the second,
it represents the projection on ther axis of the average
intermolecular potential energy that a single molecule feels when
embedded in the field of (N - 1) molecules. The interaction in
the condensed phase is withc nearest neighbors (and (N - c
-1) more distant neighbors), and that accounts for the signifi-
cantly deeper and sharper well which describes condensation.
During the change from dilute gas to condensed phase,
PESINTERMOL shifts to lower energy, and,of at least equal
importance, the curvature in the intramolecular dimension is
perturbed by virtue of the coupling between internal and external
degrees of freedom induced by intermolecular interaction. On
condensation, one thus expects, and observes, small changes in
the vibrational frequencies of the internal degrees of freedom.
Many examples of such frequency shifts, albeit small, have been
studied spectroscopically. Increased curvature on condensation
corresponds to a blue shift, decreased curvature corresponds to
a red shift. Motions along the external degrees of freedom are
also quantized but these necessarily correspond to blue shifts,
because for these modes in the ideal gas reference state (∂nEPOT/
∂R12

n) ) 0 for derivatives of all order.
To recapitulate, within the precision of the Born-Oppenhe-

imer approximation, properly calculated PESs are isotope
independent, but the quantized energy states of the motions on
the surface are isotope dependent because of isotopic mass
differences. Figure 1 illustrates the truism that the intermolecular

Figure 1. Schematic projection of the 3n dimensional (per molecule)
potential energy surface describing the effect of intermolecular interac-
tion. The diagram is scaled to approximately represent methane-
methane interaction (Table 1). The LJ potential energy of interaction
is plotted against intermolecular separation in one plane, the shifts in
the position of the minimum, and the curvature of the symmetric CH
stretching mode is plotted in another. The heavy upper curve marked
R represents the gas-gas “pair” interaction, the lower heavy curve
marked â represents condensation. The lighter parabolic curves
show the CH stretch internal vibration in the dilute gas, the dimer, and
the condensed phase. In each case, the first few vibrational levels,
n01 ) 3143.7 cm-1 (dilute gas) are shown. At 300 K,RT corresponds
to ∼8% of the oscillator zpe and∼210% of the LJ well depth (gas
phase).

TABLE 1: Thermodynamic Properties, Oscillator Energies, and Shifts on Condensation for CH4, and CD4, and H2O, and D2O,
Harmonic Oscillator Approximation a

CH4 CD4 ref or note H2O D2O ref

Eint(gas)) ΣNhcνint[1/2 + 1/(ehcν/kT- 1)] 118 592 87 529 32 53 889 39 768 34
Eint(liq) ) ΣNhcνint[1/2 + 1/(ehcν/kT - 1) 118 141 87 168 32 52 199 38 297 34
δEint ) (Eint(gas)- Eint(liq)) 451 361 b 1690 1471
∆δEint 90 b 219
Eext(gas)) ΣNhcνext[1/2 + 1/(ehcν/kT - 1) 0 0 32 0 0 34
Eext(liq) ) ΣNhcνext[1/2 + 1/(ehcν/kT - 1)] 5991 5854 32 19 116 17 658 34
δEext) (Eext(gas)- Eext(liq)) -5991 -5854 -19 116 -17 658
∆δEext -137 -1458
δEVAP ) δHVAP - RT

T ) 111.7 K
7230 (7277) 33,c

T ) 313.15 K 40 745 (41 984) 35,c
∆δEVAP

T ) 111.7 K -47 d
T ) 313.15 K -1239 e

δεliq ) (εgas
o - εliq) ) -δEint - δEext + δEVAP 12 770 (12 770) c, f 58 171 (58 171) c, f

δε6,12,gas) (εgas
o - εgas,dimer) ) Nk(ε/k)LJ,6-12 1197 (1197) 11,c 3160 (3160) 11,c, g

δε6,12,gas/δεliq 0.09 (0.09) f 0.05 (0.05) f
(κd/κc)INTERMOL 0.2 (0.2)
νd,LJ/cm-1 44 96 g

a All values in (j mol-1), except for entries otherwise specified.b δ ) (gas- liquid), ∆ ) (light isotope- heavy isotope)) (H - D). c Parenthesized
values are not independent.d This is within 7% of the value obtained in ref 19 from the temperature coefficient of the VPIE,-44 j/mol. e Within
6% of the value obtained from the temperature coefficient of the VPIE (Table 25, ref 14),-1310 j/mol. f This work. g The value is that quoted in
ref 11 for the Stockmayer potential and does not include any contribution from H-bonding. It is therefore quite unrealistic.h Using eq 53 of ref 28
with c ) 10, m ) 6, n ) 12, sm ) 1.2198 and sn) 1.0092.
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interactions accounting for ln(fp/fg2) (upper curve) and ln(fc/fg)*
(lower curve) differ not in kind, but in degree. One concludes
that [ln(fp/fg2)] ) (-VCIE) should be roughly proportional to
ln(fc/fg)*, and the constant of proportionality should be less than
unity (because of differences in the well depths and curvatures
of the effective intermolecular potentials). The well depth which
describes the gas-gas (dimer) interaction is “available” from
fits of the second virial coefficient of the parent molecule, and
that for the condensed (liquid) phase can be obtained by
combining measured energies of vaporization with the zero point
energies of the condensed and ideal vapor phases. Typically,
for substances with attractive forces limited to the vdW
dispersion interaction,εDIMER/εCONDENSED∼ 0.1,28 εDIMER is the
well depth of the potential describing the monomer-monomer
interaction in the gas, andεCONDENSED is the well depth
describing the net (sum) of monomer-monomer interactions
in the condensed phase (see Figure 1).

Moelwyn-Hughes,28 following Lennard-Jones and Ingham,29

compares the effective intermolecular potential energy in gas
and liquid using the general formu(R12) ) C12/R12

n - C6/R12
m

(for the Lennard-Jones potentialn ) 12 andm ) 6). In the
condensed phase the interaction is with a set ofc nearest
neighbors,c′ ) next-nearest neighbors, etc., and the average
potential energy per molecule in a condensed system ofN
molecules becomesu(R12) ) (snC12/R12

n - smC6/R12
m)c/2 where

sm andsn are tabulated constants obtained from lattice or smeared
lattice sums. Using the (gas+ gas ) dimer) interaction as
reference, he finds the effect of condensation is to bring the
molecules some 3 to 5% closer and to increase the well depth
by nearly an order of magnitude, at the same time increasing
the curvature at the bottom of the intermolecular well (i.e.,
increasing force constants of the equivalent harmonic oscillators,
kc > kd) and shifting the associated external frequencies
commensurately (νd/νc ∼ (1/2.7)1/2 ∼ 0.6, andνd

2/νc
2 ) (kd/

kc)(µc/µd) ∼ 0.4). In the condensed state, the average potential
energy is greater than the near pairs value, (c/2)εDIMER by 40 to
60% or more.28,30,31 These estimates are not claimed to be
precise, but they do serve to establish the general features of
the effect. In addition,and importantly for present purposes,
one expects the net internal/external interaction that results in
the ZPE shift of internal frequencies and that makes an important
contribution to the isotope effects to scale similarly. Two
examples (methane32,33 and water34,35) are given in Table 1.
Summing up, the arguments reviewed above lead us to expect
ln(fp/fg2) to be roughly proportional to ln(fc/fg)*; ln( fp/fg2) ∼ ø
ln(fc/fg)*, with the proportionality constantø ∼ 0.2 ( 0.1.36 A
more detailed description of the application of the Lennard-
Jones Ingham model to molecules discussed in this paper is
outlined in a later section.

The discussion based on the Lennard-Jones Ingham model,
strictly interpreted, refers to intermolecular modes only. With
modest generalization, we expect similar arguments to apply
to intramolecular modes as well. In that case, the intermolecular
and intramolecular (external and internal) contributions to ln-
(fp/fg2) and ln(fc/fg)* should separately correlate with propor-
tionality constantsø(internal)∼ ø(external)∼ 0.2 ( 0.1. Most
commonly, however, internal and external contributions to ln-
(fp/fg2) and ln(fc/fg)* are of opposite sign and are usefully
described using the A,B formalism, eqs 12a and 12b discussed
above. The ratio [ln(fp/fg2)/ln(fc/fg)*] ) [Ap/T2 + Bp/T]/[Ac/T2

+ Bc/T], is zero at the crossover temperature for (-VCIE),
TCROSS,p) -Ap/Bp, and is unbounded at the crossover temper-
ature for ln(fc/fg)*, TCROSS,c) -Ac/Bc. By crossover is meant
that temperature at which one or the other isotope effect, ln-

(fp/fg2) or ln(fc/fg)*, goes through zero and changes sign. Thus,
at temperatures near either crossover we conclude it is rather
more useful to report ratios of each of theA andB parameters
and not ratios of the overall effects.

Comparisons of Experimental VCIE and VPIE Data.
Tables 2 and 3 review data for most of the 14 compounds (24
sets of isotopomer pairs) for which experimental data on both
VCIE and VPIE are available.5-8,27,32,34,37-50 Virial coefficients
have been tabulated by Dymond and Smith.37 Jancso and Van
Hook14 reviewed VPIE data in 1974. The VCIEs of two
isotopomer pairs, C6H6/C6D6

50 and CH3OH/CH3OD,50 are
reported at a precision too low to permit the data to be usefully
included in the correlations. Another two pairs, H2/D2 and He3/
He,4 are very light; quantum corrections are large and the
thermodynamics are complicated by nuclear spin effects. These
systems will not be considered in this paper.

Figures 2 and 3 contain plots that compare low-temperature
ln(fc/fg)*/∆M with [ln(fp/fg2)/∆M ) (-VCIE)/∆M] for 19 of the
remaining 20 pairs (nine different compounds). For the remain-
ing pair, HCl /DCl, VCIE) 0 and a plot is uninformative.51-53

In every case, ln(fp/fg2) has been measured at appreciably higher
temperatures (sometimes well aboveTc) than has ln(fc/fg)*, and
the comparison is effectively one between the least-squares
parametersAc andBc deduced from least-squares fits of ln(fc/
fg)* vs T, for Tr < ∼ 0.7 (eq 12b) andAp andBp from fits of
ln(fp/fg2) at higher temperature, sometimes forTr > 1. We have
chosen to express the IEs in terms of [ln(fc/fg)*/∆M] and [ln-
(fp/fg2)/∆M] for economy of presentation. We are aware that
deviations from the rule of the geometric mean, well understood
in the case of the ln(fc/fg)*,12-14 and certainly expected for ln-
(fp/fg2), imply this representation to be approximate. However,
the rather large imprecision of VCIE measurements (as com-
pared to ln(fc/fg)*) introduces an uncertainty larger than that
involved in deviations from the rule of the mean. In fact, on
the scale of the figures, only for the very light series [CH4...CD4]
are deviations of VPIE from the geometric mean apparent
(Figure 3a).

In Figures 2 and 3, one notes that in almost every case ln-
(fp/fg2) is of the same sign and smaller in magnitude, yet
commensurate, with ln(fc/fg)*. The virial coefficient data are
consistent with the VPIE correlation expected from the discus-
sion above. Both effects, VPIE and (-VCIE), ln(fc/fg)* and ln-
(fp/fg2), are subject to the same underlying theoretical principles,
and that is the most important point of concern in the present
paper. (That in mind, we remark that it is unfortunate that almost
all VCIE data lie at much higher temperature than do the
experimental VPIE data used to define ln(fc/fg)*. We recommend
future VCIE measurements at lowerT where direct comparison
with measured values of ln(fc/fg)* obtained from VPIE becomes
possible. Low-pressure/low-temperature VCIE measurements
will be difficult, but experiments in this regime should permit
a more specific and detailed theoretical description of ln(fp/fg2).
In Table 2, we report (A,B) parameters of fit to eq 6 for averaged
ln(fc/fg)*/∆M and ln(fp/fg2)/∆M data. In some cases, VCIE
scatters badly, and it is impossible to define two parameters
with meaningful statistical precision. For H-bonded systems,
the statistical quality of the two parameter fits is in excess ofr2

) 0.9 (r2 is the coefficient of determination,r is the correlation
coefficient54), but the statistical quality of the hydrocarbon
measurements is not as good. These caveats in mind, we
calculated [ln(fp/fg2)/ln(fc/fg)*] ratios for A and B parameters.
Despite large uncertainties, the averaged ratios,〈(Ap/Ac ) AVCIE/
AVPIE)〉 ) 0.4 ( 0.2 and〈(Bp/Bc ) BVCIE/BVPIE)〉 ) 0.3 ( 0.2,
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are consistent with the expectations of the model. We believe
that the large uncertainties observed for these ratios are a
consequence primarily of experimental uncertainty in the VCIE
data. This matter is more thoroughly discussed below in the
section Discussion: General Remarks.

Figure 4 shows another test of the correlation between ln(fc/
fg)* and [-VCIE]. Here we compare ln(fp/fg2) near the midrange
of measurement, 1.5Tb, with ln(fc/fg)* at the boiling temperature,
Tb. The correlation line is [ln(fp/fg2)]1.5Tb ) 0.165[ln(fc /fg)]Tb-
0.00103,r2 ) 0.77. The point with the largest deviation from
the line refers to the methane/deuteromethane system, which
includes the molecules most sensitive to rotational contributions
(A term). A more direct comparison (since it refers to identical

temperatures) is given in Figure 5. The figure plots experimental
values of [ln(fp/fg2)/∆M] vs [ln(fc/fg)*/∆M]. An equation for the
reasonably good linear correlation is reported in the caption.
The correlations in Figures 4 and 5 are consistent with the
general features of the Lennard-Jones Ingham model.28-31

Within the statistical error, which is large, the parameters lie
within the expected range.

In the ln(fc/fg)*/ln( fp/fg2) comparisons made in this section and
throughout the paper, it is important to keep several caveats in
mind. To begin, eq 5, widely used for interpretation of VPIE
data when approximated with the A/B formalism eq 12b, is only
valid at pressures low enough to ignorePV correction terms
(see eqs 4 and 5). Similarly eqs 10, 11, and 12b which refer to
(-VCIE) are limited to pressures where contributions from third
and higher virial coefficients are negligible. In the present
context, however, we are comparing ln(fp/fg2) and ln(fc/fg)* at
pressures and temperatures low enough to avoid such complica-
tion. This we have accomplished by restricting the VPIE data
used to define ln(fc/fg )* to low temperature and low to modest
pressure, ln(fc/fg)* ) Ac/T2 + Bc/T ∼ VPIE, comparing with
(-VCIE) at higher temperature, but still low to modest pressure,
ln(fp/fg2) ) Ap/T2 + Bp/T. In this fashion, we avoid all regions
of the phase diagram with largePVcorrections for either phase.
The comparison that interests us is that between the linear
combination of temperature scaled fitting parameters, [Ac/T2

+ Bc/T]/[Ap/T2 + Bp/T], always at low or modest pressure.
In no sense can or do we claim to directly compare vapor
pressures and VPIEs, with virial coefficients and VCIEs, at
temperatures near or above the critical temperature, or at high
pressure.

TABLE 2: Review of Isotope Effect Data and Correlating Equations Used in This Papera

(-VCIE) ) ln(fp/fg
2) (VPIE) ) ln(fc/fg)*

isotopic
pair ndp2 Ap/∆M Bp/∆M

∼range
K

bo

cm3 ref Ac/∆M Bc/∆M
range

K TCRITICAL
e ref

Ar36/Ar40 3 10.4 120/273 50 38 10.4 84/150 151 14, 22, 56
CH3F/CD3F 3 184 218/273 80 37 512 130/210 318 39
CH4/CH3D 4 c 110/300 5, 37 d
CH4/CH2D2 4 c 110/300 5, 37 d
CH4/CHD3 4 c 110/300 5, 37 d
CH4/CD4 21 c 110/500 5, 6, 37 d
CH4/

all D isomers
33 233( 40 -2.34( 0.21 70.2 5, 6, 37 258 -2.89 90/120 191 14,32

C2H4/C2H2D2-tr 6 c 200/273 8, 37 d
C2H4/C2H2D2gem 2 c 200/210 8, 37 d
C2H4/C2D4 13 c 210/300 7, 8, 37 d
C2H4/all D isomers 21 97( 60 -0.91( 0.26 117 327 -3.28 115/180 283 14
C2H6/C2D6 8 53( 23 -0.74( 0.08 210/520 78 7, 37 140 -2.86 115/200 305 14
C(CH3)4

/C(CH3)3(CD3) 5 c 345/510 7, 37
/C(CH3)3(CD3) 6 c 345/510 7, 37
/C(CH3)3(CD3) 6 c 345/510 7, 37
/C(CH3)3(CD3) 5 c 315/510 7, 37

C(CH3)4/all D isomers 22 10.2( 5.1 -0.51( 0.13 300 -117 -1.42 257/293 434 14
NH3/ND3 7 2630( 124 -5.43( 0.34 298/473 22.1 37 5320 -12.2 218/273 406 14
CH3NH2/CH3ND2 9 1960( 382 -2.70( 1.00 298/540 80 37 5120 -11.8 218/298 430 14
CH3NH2/CD3NH2 10 -642( 150 0.31( 0.30 298/515 80 37 -164 -2.38 218/293 14
CH3NH2/CD3ND2 8 340( 44 -0.83( 0.12 298/515 80 37 2100 -6.64 218/293 14
HCl/DCl 3 (-VCIE ) 0) 190/290 37, 47 3910 -17.6 160/225 325 46
H2O/D2O 11 4277 -6.14 473/723 24.6 49 16900 -35.2 273/423 647 14

a The correlating equations in this table report smoothing equations drawn through the plots of VPIE or-VCIE data (see Figures 2 and 3)
according to eq 6. For VPIE, high experimental precision often requires a more elaborate form (refer to original literature) if fitting within the
experimental precision is desired. In some cases, poor precision of (-VCIE) results in large uncertainties in A and B parameters.b ndp ) no. of
data points.c Fits to individual isotopomer pairs not available for (-VCIE). An estimate of the reliability of fit can be made by examining Figures
2 and 3.d Fits to individual isotopomer pairs are available in the references. The precision of these VPIE data is∼100 times that for (-VCIE) and
in some cases require fitting equations that are more elaborate than eq 6. Large deviations from the rule of the geometric mean for the VPIE are
observed for the deuteromethanes, ethanes, and ethylenes. Detailed consideration of such higher order effects is not appropriate in comparisons
with (-VCIE) data which are of much lower precision.e TCRITICAL refers to the common isotope.

TABLE 3: Review of Correlating Equations Used in This
Paper to DescribeB(T)a

gas A B C bo

Ar40 1.37 142 -4020 50
CH3Fb -794 4.36× 105 8.27× 107 80
CH4 1.53 175 -6460 70.2
C2H4 1.79 221 -10 700 117
C2H6 1.49 363 -25 700 78
C(CH3)4 2.28 242 300
NH3 1.17 384 22.1
CH3NH2 1.91 174 21 200 80
H2O 0.950 717 -15 900 24.6

a Correlating parameters for log[-(B(T) - bo)] ) A + B/T + C/T2.
B(T) data from ref 37 for temperature range given in Table 2. The
units of B(T) and bo are cm3/mol; bo from standard compilations.11

b These parameters for fit to [-(B(T) - bo)] ) A + B/T + C/T2 (rather
than to log[-(B(T) - bo)]).
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Discussion

General Remarks.The ratio, [(ln(fp/fg2)/ln(fc/fg)*] ∼ 0.4 (
0.2, observed for a wide series of compounds (at temperatures
well removed from either crossover) is consistent with that
expected from the Lennard-Jones and Ingham model,∼0.2 (
0.1.30,36 Both ln(fc/fg)* and ln(fp/fg2) depend on temperature in
a complicated fashion, ln(RVPIE or VCIE) ) A/T2 + B/T. For many
compounds, theA and B terms are of opposite sign but of
commensurate magnitude; in these cases, lnR amounts to a
small difference between much larger terms. It is this difficulty,
compounded by experimental uncertainty in the VCIE data,
which probably accounts for the major part of the error in the
correlations reported above. Further progress in refining ideas
concerning the comparison between ln(fc/fg)* and ln(fp/fg2) awaits
(1) improved VCIE data of high precision, extending when
possible to temperatures which overlap ln(fc/fg)* and/or (2)
detailed spectroscopic information on pressure broadening and
pressure shifts of isotope sensitive vibrational frequencies. The
spectroscopic data should permit detailed calculation ofBp )
BVCIE using well established methods successfully developed
for the interpretation of VPIEs.13-14,16-18

Approximate Model Comparisons of ln(fp/fg
2) and ln(fc/

fg)*. Argon. Consider the interaction of two monatomic (argon)
atoms in the gas (eq 13a) or the condensation of one atom (or
mole) of argon (eq 13b),

For monatomic argon, there are no internal frequencies, so eq
12a for ln(fp/fg2) and its analogue eq 12b for ln(fc/fg)* reduce to
one-term expressions

In each case, theB parameter is zero.
Now compare gas-gas dimerization (eqs 13a and 14a) with

condensation into the liquid “lattice” (eqs 13b and 14b). On
the left of eq 13a, 6 translational degrees of freedom (unhindered
and thus corresponding to null frequencies) yield, on the right,
3 gas-phase dimer translations and 2 dimer rotations (null
frequencies), plus 1 internal dimer vibration. We follow
Moelwyn-Hughes28 in using the harmonic approximation,νd

Figure 2. Comparisons of ln(fp/fg2) ) (-VCIE) and low-temperature VPIE data, ln(fc/fg)*, T/TCRITICAL < ∼0.7, for some non-hydrocarbons. ln-
(fp/fg2) data points are shown as the large symbols. Smoothed values for ln(fc/fg)* are plotted as solid lines, the heavy portion of which shows the
range of the original data selected to define ln(fc/fg)*; the lighter portion, a guide to the eye only, is obtained from eq 6. In every case, ln(fc/fg)*
experimental data are far more precise than ln(fp/fg2), see Table 2. Parameters of fit to ln(fc/fg)*, ln(fp/fg2), and literature citations are reported in
Table 2. (a)36Ar/40Ar, (b) CH3F/CD3F, (c) H2O/D2O, (d) NH3/ND3, (e) CH3NH2/CH3ND2, (f) CH3NH2/CD3NH2. Not included is a diagram for
CH3NH2/CD3ND2 because within experimental precision both (-VCIE) and VPIE for this pair are given by{[CH3NH2/CD3NH2] + [CH3NH2/
CH3ND2]}.

(a) 2Ar (g)) Ar2 (p) (b) Ar (g) ) Ar (c) (13)

(a) ln(fp/fg
2) ) Ap/T

2 and (b) ln(fc/fg)* ) Ac/T
2 (14)
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) 1/(2π)(κp/µp)1/2 with 1/µd ) 1/m1 + 1/m2 ) 2/m, wherem
refers to the masses of the two interacting atoms (both the same),
and κp is the force constant taken from the curvature at the
bottom of the well. For condensation, 3 degrees of gas-phase
translational freedom on the left go over to 3 hindered lattice
vibrations. The vibration is now against the lattice and 1/µc )
1/m1 + 1/mlattice ) 1/m. In either case,κ is the force constant
describing the curvature at the bottom of the well andm1 ) m2

) mare the masses of the interacting particles. Again, following
Moelwyn-Hughes,28 as outlined in refs 30 and 31, we obtain
ratios of force constants and squared frequencies,κc/κp ) 5.3
( 0.6 and [νc/νp]2 ∼ 2.7 ( 0.3, to sufficient precision. In the
dimer, there is one frequency per pair of atoms. It is small (vide
supra), and the high-temperature approximation is appropriate.
ln(fp/fg2) is proportional toνp

2. In the condensed phase, there is
a band of hindered translational frequencies (3 from each

condensed phase atom, which, we assume, suitably average to
νc), so the contribution to ln(fc/fg)* is proportional to 3νc

2 )
3(2.7 ( 0.3)νp

2. With the use of an experimentally available
frequency55 for Ar2 (Table 3 of ref 53) and the equations above
and in refs 28, 30, and 31, one obtains ln(fp/fg2) ) [-VCIE] )
(1/24)(hc/k)2(ν′p/T)2(1-36/40) ) 6.3/T2 per pair so ln(fp/fg2)/
∆M ) 1.6/T2. Also, from the development above, ln(fc/fg)* )
3(2.7 ( 0.3) ln(fp/fg2) ) (46 ( 5)/T2, (ln(fc/fg)*/∆M ) (12 (
1)/T2). The value extracted from the Lee-Bigeleisen experimental
data56 is Ac/∆M ) 10.4 K2, and is in reasonable agreement with

Figure 3. Comparisons of ln(fp/fg2) ) (-VCIE) and low-temperature VPIE data, ln(fc/fg)*, T/TCRITICAL < ∼ 0.7, for some hydrocarbons. ln(fp/fg2)
data points are shown as the large symbols. Smoothed values for ln(fc/fg)* are plotted as solid lines, the heavy portion of which shows the range
of the original data selected to define ln(fc/fg)*; the lighter portion, a guide to the eye only, is obtained from eq 6. In every case, ln(fc/fg)* experimental
data are far more precise than ln(fp/fg2), see Table 2. Parameters of fit to ln(fc/fg)*, ln(fp/fg2), and literature citations (when not specified below) are
reported in Table 2. (a) Methane/deuteromethanes: CH4/CH3D (circles5), CH4/CH2D2 (squares5), CH4/CHD3 (triangles5), and CH4/CD4 (diamonds,5

hexagons,64 and squares6). The four separate curves for ln(fc/fg)*, (reading down, in order) CH4/CH3D, CH4/CH2D2, CH4/CHD3, and CH4/CD4,
demonstrate well understood large deviations from the rule of the geometric mean.32 (b) C2H6/C2D6. (c) C2H4/C2D4 (squares7 and triangles8), C2H4/
trans-C2H2D2 (hexagons8) and C2H4/gem-C2H2D2 (triangles8). (d) C(CH3)4/C(CH3)3(CD3) (hexagons), C(CH3)4/C(CH3)2(CD3)2 (triangles), C(CH3)4/
C(CH3)(CD3)3 (diamonds), and C(CH3)4/C(CD3)4 (circles).

Figure 4. The correlation of ln(fp/fg2) ) (-VCIE) near the midrange
of its measurement (∼1.5Tb) with ln(fc/fg)* at the boiling point,Tb. The
linear correlation line is ln(fp/fg2)1.5Tb ) 0.165 ln(fc/fg)*Tb - 0.00103,r2

) 0.77.

Figure 5. The correlation of ln(fp/fg2) ) (-VCIE) across the range of
its measurement with ln(fc/fg)*/∆M at the temperatures of the experi-
mental VCIE measurements. The correlation line is ln(fp/fg2) ) 0.49
ln(fc/fg)* + 1.2× 10-3, r2 ) 0.6. Open circles) argon; darkly shaded
circles ) CH3F/CD3F; small squares) methanes; lightly shaded
triangles) ethanes; small diamonds) ethylenes; shaded hexagons)
neopentanes; large inverted triangles) ammonia; large inverted crossed
triangles) methylamines (CD3); upright dotted triangles) methy-
lamines (ND2); upright open triangles) methylamines (CD3ND2);
crossed shaded circles) H2O/D2O.
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this estimate, 12 K2. Presumably, proper consideration of
anharmonicity in the LJ calculation would improve the agree-
ment.

It is interesting to compare experimentally available frequen-
cies55 for Ar2. The observed frequency for the lowest transition
is ν1,0 ) 25.7( 0.5 cm-1, but the potential is highly anharmonic,
(for instanceν2.1 ) 20 cm-1). Using LJ parameters from
Hirschfelder, Curtiss and Bird11 (Table 4), we calculateνLJ )
30 cm-1 in good agreement with 25.7 cm-1, but that improves
(νLJ ) 26) with use of the more recent values,ε/k ) 117.7 K
andσ ) 3.404A, of Fischer et al.57 For the condensed phase,
still following Moelwyn-Hughes,28-31 one obtains (42< νc<
52 cm-1); the range is determined by the choice of coordination
number and lattice employed in the calculation outlined in
footnote 27. An experimental estimate forνc is available from
ln(fc/fg)* derived force constants reported by Lee and Big-
eleisen.56 One obtains temperature-dependent effective harmonic
frequenciesνc ) 41, 40, 36, and 24 cm-1 at T ) 85, 95, 120,
and 150 K (critical point), respectively.58,59 Thus, there is
reasonable agreement between the LJ estimated and the
“ experimental”νc’s at low temperature (∼47 ( 5 vs 41( 2
cm-1) and also at higher temperature (∼28 vs 24 cm-1). The
former comparison is between the LJ estimated condensed phase
frequency and the Lee-Bigeleisen low-temperature liquid fre-
quencies, while the latter is between the LJ dimer frequency
and the Lee-Bigeleisen value at the critical point. The agreement
between the lattice frequencies of the condensed phase calcu-
lated using the LJ model, i.e., theνc’s, and those obtained from
interpretation of the ln(fc/fg)* data is reassuring. It confirms the
validity of the present approach. However, it is puzzling that
the value for ln(fp/fg2) calculated from the LJ dimer frequency
in the harmonic approximation (eq 12a and Table 4), crude
though it may be, differs appreciably from experimental
measurement.38 That difference is worrisome. It has led us to

initiate further studies60 that will compare quantum corrections
to [-VCIE] for LJ and other potentials using various methods,
including those first introduced by deBoer and Michels.26 So
far as the harmonic approximation is concerned, however, one
expects approximately the same reliability for values calculated
from an LJ potential for both ln(fp/fg2) and ln(fc/fg)*. (VPIE)Ex-

perimental is well established by measurements from several
laboratories14 and is in reasonable agreement with calculation.
We estimate the precision of the harmonic LJ calculation for
ln(fc/fg)* to be good to within a factor of∼2. ln(fc/fg)* is reliable
to ∼5% or better in the temperature range of the experimental
VPIE data, (∼85 < T/K < ∼125), less reliable at higher
temperature (217< T/K < 273) where the comparison with
ln(fp/fg2) is made. Even so, ln(fc/fg)* is certainly established at
high temperature to well within a factor∼2. The error bars in
Figure 2a correspond toδ∆B ) ( 0.2 cm3/mol.

Methane/Deuteromethanes.For molecules with structure, one
expects significant contributions to ln(fp/fg2) from both external
(dimer) and internal (vibrational) modes, as was true for ln(fc/
fg)*. The (LJ) development outlined above applies only to
external modes, and the following discussion is limited to that
part of the problem, comparingA/T2 (eqs 6 and 12) obtained
from measurements of VPIE and (-VCIE) with each other and
with values obtained from the LJ calculations.28,30,31There is a
large isotope effect on the moments of inertia of the deuter-
omethanes, and rotational effects are expected to be important.
In that context, consider dimerization of methane, 2CH4 (free)
) (CH4)2 (dimer). As before, 6 translational (null frequencies)
and 6 rotational modes (null frequencies) per pair of dilute gas
molecules yield 3 dimer translations and 3 dimer rotations (null
frequencies), plus 1 methane-methane dimer stretching vibra-
tion, 1 methane-methane torsion, and 4 dimer methane-
methane bending modes (perhaps better described as hindered
internal rotations). The bending modes are presumably charac-
terized by G matrix elements that are more nearly proportional
to 1/I or 1/IRED than the 1/M or 1/µ dependences that describe
the methane-methane dimer vibration or condensed phase
hindered translations. In summary then, 12 external degrees of
freedom per pair of molecules in the dilute gas (null frequencies)
yield 6 null frequencies and 6 real frequencies in the dimer.
For the dimer vibration,νd ) 1/(2π)(κ/µ)1/2; 1/µ ) 1/m1 + 1/m2

) 2/m (m is the mass of the methane molecule), while for the
internal rotational modes 1/ΙRED ∼1/I1 + 1/I2 ∼ 2/I andνROT ∼
1/(2π)(2κ/I)1/2. Compare this result with that for condensation
where the 6 degrees of translational and rotational freedom per
gas-phase molecule go over to 6 hindered lattice vibrations. As
for argon, we take [νc/νp]2 ∼ (2.7( 0.3) to sufficient precision.
In the gas dimer, there is one vibrational frequency per pair of
molecules, and five hindered rotational frequencies (bending
modes) per pair. The contribution to ln(fp/fg2) is proportional to
[ν2(vib, dimer) + 5ν2(rot, dimer)]. In the calculation of ln(fc/
fg)*, we consider 6 external frequencies per molecule; the
contribution is proportional to [3ν2(vib, lattice) + 3ν2(rot,
lattice)].

The numerical calculations using LJ parameters from Hir-
schfelder, Curtiss and Bird11 are summarized in Table 4. Those
calculations and the following discussion are limited to con-
sideration of theA/T2 contributions to ln(fp/fg2) and ln(fc/fg)*.
One obtainsνp(vib,CH4) ) 44 cm-1, which, assumingνp(rot)
) νp(vib) yields ln(fp/fg2)CH4/CD4 ) (1/24)(hc/k)2(ν′p/T)2[(1 -
16/20)+ 5(1 - 1/2)] ) 452/T2, or ln(fp/fg2)/∆M ) 113/T2. We
have followed Bigeleisen Craig and Jeevanandam32 in taking

TABLE 4: Parameters Employed for LJ Estimates of
Ap/∆M ) A(-VCIE) /∆M and Ac/∆M ) AVPIE/∆M for Four
Systems

system
(ε/k)

K σ/A
νp

cm-1
νc

cm-1
A(-VCIE)

K2
AVPIE

K2 remarks

Ar36/Ar40 11857 3.457 26 1.6 a
47 ( 5 12

expt55-57 26 41 10 10

methane/
deutero-
methanes
calc (I) 14811 3.8211 44 44 113 238 a, b

(II) 44 72 288
expt 75 233( 40 258

C2H6/C2D6

calc (I) 24311 3.9511 40 69 42 132 a, c
(II) 90 132

expt 53( 23 140

C2H4/
deutero
ethylenes
calc (I) 19911 4.5211 33 57 38 94 a, d

(II) 74 206
expt 97( 60 327

a See text for a thorough discussion.b Calc. I and Calc. II differ in
the treatment of the rotational contribution for the gas dimer, see text.
c Calc(I) ν(rot,dimer)) ν(tr,dimer),δν(int rot) ) 0; Calc(II) as Calc(I)
exceptδν(int rot) ) δν(int rot, liq) ) (290-278). In either case, there
is rough correspondence between vpie and (-vcie) and the model.
d Calc(I), ν(rot,dimer)) ν(tr,dimer); Calc(II) as Calc(I) exceptν(Rz)/
ν(Rx) ) 2.1 which was the value used in VPIE liquid-state calcula-
tions.14
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ν2(vib) ∼ ν2(rot). Turning attention to ln(fc/fg)*, we obtain, ln-
(fc/fg)* ) (2.7)(1/24)(hc/k)2(ν′p/T)2[3(1 - 16/20)+ 3(1 - 1/2)]
) 950/T2 or ln(fc/fg)*/∆M ) 238/T2. The liquid frequency
obtained from the LJ calculation is ((2.7( 0.3)442)1/2 ) 72 (
4 cm-1, which is in good agreement with the BCJ values,νc-
(vib) ) 77 cm-1 and νc(rot) ) 72 cm-1. Even so, the value
obtained for ln(fp/fg2) from the LJ analysis, Ap/∆M ) A[-VCIE]/
∆M ) 113K2, is not in good agreement with experiment, 233
( 40 K2; it is too small. As in the case of argon,Ap ∼ Ac, and
that observation is difficult to rationalize. In any case, using a
somewhat different set of assumptions, takingνd(vib) ∼ 44 cm-1

as before but assumingνd(rot) ∼ νc(rot) ) 72 cm-1, one obtains
Ap/∆M ) 288 K2, in somewhat better agreement with experi-
ment. The “external” contribution in methane is large. The
agreement between the LJ calculation and experiment forAc )
AVPIE is gratifying, but the use of “liquidlike” rotational
frequencies to calculateAp ) AVCIE is unpalatable even though
the result is reasonable.

Brief Comments, Other Species: (a) Methyl Fluoride CH3F/
CD3F. [-VCIE] is small and positive. The liquid-phase
frequency, 55 cm-1, obtained from the LJ parameters, compares
with Ishida’s39 value∼80 cm-1. The temperature dependence
of ln(fc/fg)* is large, and Ishida and co-workers39 introduced
temperature-dependent external frequencies which they at-
tributed to specific directional interactions, dampening asT
increases. (ln(fc/fg )* for H/D IEs of methyl fluoride is of
opposite sign and∼3 to 4 larger than that for typical
hydrocarbons,∼ +0.03 or+0.04 per D as compared to typically
-0.01 per D). The VCIE data are at higherT, but similar
considerations apply. Because of the specific nature of the
interaction, an LJ model calculation is inappropriate.

(b) Ethane C2H6/C2D6. There is reasonable agreement be-
tween ln(fc/fg)*, data and the LJ model, but this is dependent
on setting the contribution of the internal rotation in the gas-
dimer partition function ratio equal to its contribution to the
gas-liquid ratio. (See Table 4).

(c) Ethylene C2H4/C2D4/C2H2D2 (Table 4). Again, there is
reasonable agreement between ln(fc/fg)* and ln(fp/fg2) data and
the model calculations.

(d) Neopentane C(CH3)4/C(CH3)3CD3/ C(CH3)2(CD3)2 /C-
(CH3)(CD3)3/C(CD3)4. The VCIE data are not precise enough
to warrant a two parameter fit. ThatAp < 0 (Table 2) most
likely indicates that the methyl torsional motions red shift on
condensation to the liquid. For the gas-phase dimer, the reduced
masses and moments of inertia are large and (Ap/T2) , (Bp/T);
the bulk of the VCIE is due to the shift in internal frequencies.
It is not useful to pursue the LJ description of the external mode
contributions.

(e) Ammonia NH3/ND3 and Methylamine CH3NH2/CH3ND2.
Large A terms result from H-bonding in the dimer or liquid
states. The LJ formalism is not useful because dispersive
contributions are overwhelmed by large directionally specific
H-bonding contributions.

(f) Methylamine CH3NH2/CD3NH2. The sign of theA terms
is negative, and this is unexpected. It most likely indicates
a red shift for the torsional motion of the CH3 group in dimer
or condensed phase relative to the dilute gas due to H-bonding
at the other end of the molecule. The LJ contribution is
unimportant as compared to the consequences of the H-bond-
ing.

(g) Methylamine CH3NH2/CD3ND2. To within experimental
precision, the effects are those calculated assuming additivity
(D5 ) D3 + D2).

(h) Water H2O/D2O. Large A and B terms result from
H-bonding in dimer or liquid. These effects cannot be properly
treated using LJ analysis.

Conclusion

Isotope effects on the vapor phase second virial coefficient
and on vapor pressure share a common origin. They are
approximately proportional to one another, ln(fp/fg2) ) (-VCIE)
) (0.4 ( 0.2) ln(fc/fg)*, provided the comparisons are made
not too close to either crossover temperature. Both ln(fp/fg2) and
ln(fc/fg)* depend on temperature in a complicated fashion; ln-
(fc/fg)* or ln(fp/fg2) ) A/T2 + B/T. For many compounds, theA
and B terms are of opposite sign but of commensurate
magnitude, and in such cases ln(fc/fg)* or ln(fp/fg2) amounts to
a small difference between much larger terms and may be either
positive (normal) or negative (inverse). Ordinarily, the A
contribution results from quantization of the overall motions
of the molecule of interest (external modes) upon transfer from
the gas phase to the condensed phase or interacting vapor pair
and is positive. The formalism developed in this paper to
compare ln(fc/fg)*, referring to VPIE, and ln(fp/fg2), referring to
(-VCIE), treats the (vapor monomer) n-coordinated liquid)
and (vapor monomer) vapor pair) equilibria analogously and
focuses attention on their common origin.
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Appendix A: The Genesis of Eqs 6, 10, and 12. The A/B
Equations

In 1963 Stern, Van Hook and Wolfsberg13 presented a
formalism for the calculation of VPIE from input data that
includes complete force fields (or frequency data) for the ideal
gas and condensed phases, and that approach has been extended
to the VCIE in the present paper, in which case the spectroscopic
data (or the equivalent force constants and force constant shifts)
refer to the ideal gas and gas phase dimer species. The formalism
is usually presented in the harmonic approximation. Generaliza-
tion to anharmonic force field appears possible, albeit compli-
cated. In the gas, the partition functions for translation and
rotation are evaluated classically, and no vibration-rotation
interaction is assumed. The type of calculation we are doing is
often referred to as a rigid-rotor-harmonic-oscillator calculation.
The reduced partition function ratio in the gas for a nonlinear
n-atom molecule is then

whereQVIB,QM is the quantum mechanical, and Q′VIB,CL is the
classical vibrational partition function

andui ) hcνi/kT, νi is theith normal mode vibrational frequency
in wavenumbers. At low rotational temperatures, a correction
for nonclassical rotation may be necessary. In eq 1,s ands′ are
symmetry numbers, which have been dropped from eqs 3

(s/s′)fg ) (QQM/Q′QM)/(QCL/Q′CL) ) (QVIB,QM/Q′VIB,QM)/

(QVIB,CL/Q′VIB,CL) ) ∏
3n - 6

[ui/u′i][{exp(-ui/2)/

(1 - exp(-ui))}/{exp(u′i/2)/(1 - exp(-u′i))} (A-1)

QVIB,QM ) ∏
3n - 6

exp(-ui/2)/(1 - exp(-ui))

QVIB,CL ) ∏
3n - 6

(1/ui) (A-2)
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through 10 for economy of notation since they do not impact
present considerations.

In the condensed or vapor pair states, we choose a simplified
model that assumes an average condensed phase molecule with
3n degrees of freedom, or interacting pair with 2*3n degrees
of freedom. The (3n - 6)c or 2(3n - 6)p internal vibrational
modes are treated in strict analogy to the gas phase, and the
remaining external degrees of freedom (6 for the condensed
molecule, and 12 for the dimer, but 6 of those are null
frequencies) are assumed to be subject to harmonic restoring
forces. These assumptions yield

and

whereLc or p ) [(ui/u′i)c or p/(ui/u′i)g][exp((u′i - ui)c or p/2)/exp((u′i

- ui)g/2)], M ) [(1 - exp(-u′i)c or p)/(1 - exp(-ui)c or p)]/[(1 -
exp(-u′i)g)/(1 - exp(-ui)g)], andN ) [ui/u′i]c or p [exp((u′i - ui)/
2)]c or p [(1 - exp(-u′i))/(1 - exp(-ui))]c or p.

A common approximation makes use of the fact that very
often the 3n normal modes per molecule fall neatly into two
groups. The first group contains the high frequenciesui .1 and
may be treated in the zero point energy (low temperature)
approximation because excitation factors for these frequencies
all approach unity. The second group contains only low
frequencies and is treated in the high-temperature approximation.
For the low-frequency group, one employs the expansion of
ln(f) in even powers ofu.12

The B’s are the Bernoulli numbers,B1 ) 1/6, B2 ) 1/30, etc.
As is well-known, the logarithim of the harmonic oscillator
partition function in the zero point (low-temperature, high-
frequency) approximation reduces tou/2, so the contribution
from the high-frequency group is of the form

With proper reorganization and labeling, and using just the first
term of the expansion in eq 7, one obtains (recognizing that six
of the external dimer modes are null frequencies)

Figure 6. ln(P′/P) ) VPIE and ln(fc/fg) for some systems where measurements of vapor pressure and molar volume and virial coefficient corrections
have been made over most of the range (TTRIPLE < T < TCRITICAL). In each case, the filled squares designate ln(fc/fg), the filled circles designate
ln(P′/P). (a) C6H6/C6D6 (ref 50). The heavy solid line is the least-squares fit to data extending across the entire temperature range, ln(P′/P) ) 39/Tr

2

- 218/Tr. On the scale of the figure, it cannot be distinguished from the fit to the low temperature (T/TCRITICAL < ∼0.7) data only (b) (CH3)2CO/
(CD3)2CO (ref 50). The lighter line is the least-squares fit to data extending across the entire temperature range, ln(P′/P) ) 105/Tr

2 - 307/Tr, the
heavier line is the fit to the low temperature (T/TCRITICAL < 0.7) data, ln(P′/P) ∼ ln(fc/fg)* ) 113/Tr

2 - 324/Tr. (c) H2O/D2O (ref 50). The lighter
line is the least-squares fit to data extending across the entire temperature range, ln(P′/P) ) 756/Tr

2 - 980/Tr, the heavier line is the fit to the low
temperature (T/TCRITICAL < 0.7) data, ln(P′/P) ∼ ln(fc/fg)* ) 819/Tr

2 - 1112/Tr. (d) 36Ar/40Ar (refs 22, 61). The lighter line is the least-squares fit
to the low temperature (T/TCRITICAL < 0.7) data, ln(P′/P) ∼ ln(fc/fg)* ) 19.8/Tr

2, the heavier line is a two parameter fit to that same data ln(P′/P)
∼ ln(fc/fg)* ) 15.9/Tr

2 + 1.3/Tr
4.

fc ) ∏
i)1

3n

[ui/u′i]c[{exp(-ui/2)/(1 - exp(-ui))}/{exp(-u′i/2)/

(1 - exp(-u′i))}]c (A-3)

fc/fg ) ∏
Ints

3n - 6

(LcMc) * ∏
Exts

6

(Nc) (A-4)

fp ) ∏
i)1

2*3n - 6

[ui/u′i]p[{exp(-ui/2)/(1- exp(-ui))}/

{exp(-u′i/2)/(1 - exp(-u′i))}]p (A-5)

fp/fg
2 ) ∏

Ints.

2*3n - 6

(LdMd) ∏
Exts.

2*3n - 6

(Nd) (A-6)

ln fi ) ∑
j)1

∞

(-1)j+1B2j-1(u′i
2j - ui

2j) /[(2j)(2j!)] (ui < 2π)

ln f ) ∑
low freqs

ln(fi) (A-7)

ln fHIGH ) ∑
High

Frequencies

(u′i - ui)/2 (ui . 1) (A-8)
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The analogous equation for ln(fc/fg)* is obtained from eqs A-5
and A-6,

Equations A-9 and A-10 are eqs 12a and 12b of the main text.

Appendix B: The Behavior at High Temperature

Kooner and Van Hook50 have examined the behavior of eq
4 (slightly modified) asT and P increase toward the critical
region.

The third term on the right is the correction for vapor
nonideality, which at lower pressures can be conveniently
reexpressed using the virial expansion.

which is the form used in eq 4. At high pressure, however, the
virial expansion is not useful; too many higher order terms are
required, and close to the critical pressure the formalism is not
useful at all. The authors50 reported new data that extends to
the immediate vicinity of the critical point for C6H6/C6D6, CH3-
CO/CD3CO, and CH3OH/CH3OD, and examined literature data
for CH4/CD4 and H2O/D2O. Figure 6, panels a, b, and c,
illustrate their comparisons of ln(fc/fg) and ln(P′/P) for three of
of these pairs, and Figure 6d represents a similar comparison
for 40Ar/36Ar.21,22,27,61,62 In each case, within experimental
precision ln(fc/fg) is small atTR ) T/TCRIT ) 1. The point of
present interest is that least-squares fits of ln(P′/P) using the
form of eq 6 (or, for Ar, an appropriate modification) accurately
represent the data in each case, and forT low enough, sayTR

) T/TCRIT < ∼ 0.7, ln(P′/P) and ln(fc/fg) coincide to sufficient
precision. We note that to good approximation lna ) LVFF
(liquid-vapor-fractionation-factor)) ln(fc/fg) over the entire
liquid range (TTRIPLE < T < TCRITICAL).

While, as shown in Appendix A, eqs 6 and A-10 model ln-
(fc/fg) in the harmonic oscillator approximation to good precision,
the agreement obviously fails asTR increases. A better approach
at high temperature employs the pseudo-harmonic approxima-
tion. This method assumes the frequency shifts, condensed to
vapor phase, and their associated force constants and force
constant shifts, are some simple function of the molar volumes
and molar volume differences of equilibrating phases and
therefore depend on temperature only indirectly (i.e., via the
expansivity). In one such approach, a Gruneisen approximation

is written for each of thei isotope dependent frequencies or
frequency shifts, (d lnνliq/d lnVliq)i ) γi, whereγi is a parameter.
These methods have been thoroughly reviewed.14,17,58In a more
general formulation, Bigeleisen and co-workers reviewed the
use of isotope effect studies to establish the mean square force
in simple liquids and to calculate the mean force constants of
the rare gases and the rectilinear law of mean force.61,62 This
author and co-workers conclude that in the approximation where
excess effects on mixing of isotopes are neglected liquid/vapor
isotope fractionation factors, ln(R), are expected to scale as ln-
(fc/fg), and this persists to the critical point.21 This is consequent
to the proportional scaling of〈∇2U〉 (and thus theA and B
parameters as well) with orthobaric density.

The present interest, however, lies not in the high-temperature
orthobaric approach to the critical pressure but in the properties
of the low-temperature liquid. The approximation ln(P′/P) ∼
ln(fc/fg)* ) A/T2 + B/T for Tr < ∼0.7, withA andB calculated
in the harmonic approximation using eq 10, makes use of the
observations that the expansivity of the low temperature liquid
is small and the vapor is nearly ideal. Over the temperature
ranges specified in Table 2, typically (∼0.5 < Tr < 0.67), the
liquid expands by∼10%.63 The use of temperature averaged
Ac and Bc over that range is warranted for present purposes,
and this conclusion is supported by the statistical quality of the
ln(P′/P)* ) Ac/T2 + Bc/T fits shown in Figures 2, 3, and 6, and
reported in Table 2. At the temperatures of interest to us,Tr <
∼0.7 pseudo-harmonic corrections, while important for the
understanding of isotope effects on excess free energies of
mixing, and for rationalizing certain fine points of interpretation
of VPIEs, are small.14,17,18
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2 -

νi
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2 - νi
2)LJ} +

(1/2)(hc/kT)( ∑
2(3n - 6)

[(ν′i - νi)p - (ν′i - νi)g])INT (A-9)

ln(fc/fg)* ) Ac/T
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(1/24)(hc/kT)2{∑
6

[(ν′i
2 - νi

2)EXT.lattice modes}c +

(1/2)(hc/kT)( ∑
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[(ν′i - νi)c - (ν′i - νi)g])INT (A-10)

ln(fc/fg) ) ln(P′/P) - (P′V′c - PVc)/RT+

(1/(RT)) [∫0

p′
R′dP- ∫0

p
RdP] (B-1)

[∫0

p′
R′dP- ∫0

p
RdP]/RT) (1/RT) [∫0

p′
(V - RT/P)′dP′ -

∫0

p
(V - RT/P)dP]∼ [(Bo′P′ + (1/2)CoP′2) - (BoP +

(1/2)CoP′2))/(RT) (B-2)
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may be compared with the force constantκp of the gas-gas pair (derived
by taking the second derivative ofup(R12) above). MH finds (κp/κc) ) 3
(sn/sm)2.33/csn for n ) 12, m ) 6. For the smeared FCC structure withc )
12 this yields (κp/κc) ) 0.17. One can calculate the harmonic frequencies
of the N-atomic lattice by diagonalizing the Cartesian force constant matrix
corresponding to mass weighted Cartesian coordinates; the diagonal elements
of this matrix contain three elements for each atom, each of which is equal
to κc/m. It is well-known that the sum of the squares of the 3N lattice
frequencies is [(2π)-2(3Nκc)/m]; each atom contributes effectively [(2π)-2-
(3κc)/m]. MH designates (1/2π)(κc/m)1/2 as the lattice frequencyνc, where
m is the mass corresponding to the lattice position. He reasons this to be
correct on the assumption that each atom vibrates against the total lattice.
This is an approximation since in truth there is a band of frequencies. This
is further discussed in the following ref 31. MH then calculates (for the
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